DocumentCode :
11654
Title :
Dynamic Diffusion Estimation in Exponential Family Models
Author :
Dedecius, Kamil ; Seckarova, Vladimira
Author_Institution :
Inst. of Inf. Theor. & Autom., Prague, Czech Republic
Volume :
20
Issue :
11
fYear :
2013
fDate :
Nov. 2013
Firstpage :
1114
Lastpage :
1117
Abstract :
This letter proposes a new dynamic diffusion estimation method for a collaborative inference of a common model parameter using a distributed network of cooperating nodes. Unlike the existing single problem-oriented diffusion methods, it is formulated abstractly for the exponential family of models. The resulting advantage-its easy and straightforward application to the family members-is demonstrated on three selected cases: the diffusion autoregression, the diffusion Poisson modelling and the diffusion estimation of a Bernoulli process with unknown proportions. The first case is shown to coincide with the diffusion recursive least squares.
Keywords :
estimation theory; inference mechanisms; least squares approximations; parameter estimation; regression analysis; stochastic processes; Bernoulli process; collaborative inference; cooperating node; diffusion Poisson modelling; diffusion autoregression; diffusion recursive least square method; distributed network; dynamic diffusion estimation method; exponential family model; parameter estimation; single problem-oriented diffusion method; Abstracts; Adaptation models; Bayes methods; Estimation; Nickel; Probability density function; Signal processing algorithms; Diffusion estimation; distributed estimation; parameter estimation; sensor networks;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2013.2282042
Filename :
6601002
Link To Document :
بازگشت