DocumentCode :
1167047
Title :
An Algorithm for Universal Lossless Compression With Side Information
Author :
Cai, Haixiao ; Kulkarni, Sanjeev R. ; Verdú, Sergio
Author_Institution :
Dept. of Electr. Eng., Princeton Univ., NJ
Volume :
52
Issue :
9
fYear :
2006
Firstpage :
4008
Lastpage :
4016
Abstract :
This paper proposes a new algorithm based on the Context-Tree Weighting (CTW) method for universal compression of a finite-alphabet sequence x1 n with side information y1 n available to both the encoder and decoder. We prove that with probability one the compression ratio converges to the conditional entropy rate for jointly stationary ergodic sources. Experimental results with Markov chains and English texts show the effectiveness of the algorithm
Keywords :
Markov processes; data compression; decoding; entropy codes; probability; sequences; tree codes; CTW method; English text; Markov chain; context-tree weighting; decoder; encoder; entropy rate; finite-alphabet sequence; probability; side information; stationary ergodic source; universal lossless compression; Compression algorithms; Data compression; Decoding; Entropy; Hidden Markov models; Image coding; Image resolution; Protocols; Source coding; Video compression; Arithmetic coding; conditional entropy; context tree weighting method; hidden Markov process; source coding; universal lossless data compression;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2006.880020
Filename :
1683922
Link To Document :
بازگشت