DocumentCode :
11690
Title :
Modeling and Optimization of a Roll-Type Electrostatic Separation Process Using Artificial Neural Networks
Author :
Touhami, Seddik ; Medles, Karim ; Dahou, Omar ; Tilmatine, Amar ; Bendaoud, Abdelber ; Dascalescu, Lucian
Author_Institution :
Dept. of Electr. Eng., Univ. Djillali Liabes, Sidi Bel Abbes, Algeria
Volume :
49
Issue :
4
fYear :
2013
fDate :
July-Aug. 2013
Firstpage :
1773
Lastpage :
1780
Abstract :
The aim of this paper is the development of a procedure for the optimization of electrostatic separation processes using artificial neural networks (ANNs) in association with genetic algorithms. The objective was to maximize the insulation product, the control variables being the high voltage that supplies the electrode system and the rotation speed of the roll electrode. The ANN model is compared with that obtained using the classical experimental design methodology. The predicted optimum is confirmed by experiment.
Keywords :
electrostatic precipitators; electrostatics; genetic algorithms; insulation; neural nets; artificial neural networks; control variables; electrode system; genetic algorithms; insulation product; roll electrode; roll-type electrostatic separation process; rotation speed; Artificial neural networks (ANNs); electrostatic separator; genetic algorithms (GAs);
fLanguage :
English
Journal_Title :
Industry Applications, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-9994
Type :
jour
DOI :
10.1109/TIA.2013.2256451
Filename :
6495477
Link To Document :
بازگشت