Title :
Doubly iterative receiver for block transmissions with EM-based channel estimation
Author :
Pham, The-Hanh ; Liang, Ying-Chang ; Nallanathan, A.
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore
Abstract :
Cyclic-prefix code division multiple access (CP-CDMA), multicarrier CDMA (MC-CDMA) and single carrier cyclic-prefix (SCCP) transmission are some schemes that could support the increasing demand of future high data rate applications. The linear and nonlinear equalizers used to detect the transmitted signal are always far from the maximum-likelihood (ML) detection bound. The block iterative generalized decision feedback equalizer (BI-GDFE) is an iterative and effective interference cancelation scheme which could provide near-ML performance yet with very low complexity. In order to deploy this scheme, the channel state information (CSI) must be available at the receiver. In practice, this information has to be estimated by using pilot and data symbols. This paper investigates the problem of channel estimation using the expectation maximization (EM) algorithm. The BI-GDFE provides the soft information of the transmitted signals to the EM-based algorithm in the form a combination of hard decision and a coefficient so-called the input-decision correlation (IDC). The resultant receiver becomes a doubly iterative scheme. To evaluate the performance of the proposed estimation algorithm, the Cramer-Rao lower bound (CRLB) is also derived. Computer simulations show that the bit error rate (BER) performance of the proposed receiver for joint channel estimation and signal detection can reach the performance of the BI-GDFE with perfect CSI.
Keywords :
channel estimation; code division multiple access; decision feedback equalisers; error statistics; expectation-maximisation algorithm; maximum likelihood estimation; radio receivers; BER; EM-based channel estimation; bit error rate; block iterative generalized decision feedback equalizer; block transmissions; channel state information; cyclic-prefix code division multiple access; doubly iterative receiver; expectation maximization algorithm; high data rate applications; input-decision correlation; joint channel estimation; maximum likelihood detection bound; multicarrier CDMA; nonlinear equalizers; single carrier cyclic-prefix; Bit error rate; Channel estimation; Decision feedback equalizers; Interference; Iterative algorithms; Maximum likelihood detection; Maximum likelihood estimation; Multiaccess communication; Multicarrier code division multiple access; Signal detection; CP-CDMA; Channel estimation; MC-CDMA; SCCP; doubly iterative receiver; expectation maximization (EM) algorithm;
Journal_Title :
Wireless Communications, IEEE Transactions on
DOI :
10.1109/TWC.2009.071416