Title :
Unification and evaluation of equalization structures and design algorithms for discrete multitone modulation systems
Author :
Martin, Richard K. ; Vanbleu, Koen ; Ding, Ming ; Ysebaert, Geert ; Milosevic, Milos ; Evans, Brian L. ; Moonen, Marc ; Johnson, C. Richard, Jr.
Author_Institution :
Dept. of Electr. & Comput. Eng., Air Force Inst. of Technol., Wright Patterson, OH, USA
Abstract :
To ease equalization in a multicarrier system, a cyclic prefix (CP) is typically inserted between successive symbols. When the channel order exceeds the CP length, equalization can be accomplished via a time-domain equalizer (TEQ), which is a finite impulse response (FIR) filter. The TEQ is placed in cascade with the channel to produce an effective shortened impulse response. Alternatively, a bank of equalizers can remove the interference tone-by-tone. This paper presents a unified treatment of equalizer designs for multicarrier receivers, with an emphasis on discrete multitone systems. It is shown that almost all equalizer designs share a common mathematical framework based on the maximization of a product of generalized Rayleigh quotients. This framework is used to give an overview of existing designs (including an extensive literature survey), to apply a unified notation, and to present various common strategies to obtain a solution. Moreover, the unification emphasizes the differences between the methods, enabling a comparison of their advantages and disadvantages. In addition, 16 different equalizer structures and design procedures are compared in terms of computational complexity and achievable bit rate using synthetic and measured data.
Keywords :
FIR filters; Rayleigh channels; computational complexity; discrete systems; equalisers; error statistics; interference suppression; modulation; radio receivers; radiofrequency interference; time-domain analysis; CP length; FIR filter; TEQ structure; bit rate; computational complexity; cyclic prefix; discrete multitone modulation system; finite impulse response; generalized Rayleigh quotient; interference tone-by-tone; multicarrier receiver system; time-domain equalizer; Algorithm design and analysis; Channel bank filters; DSL; Discrete Fourier transforms; Equalizers; Finite impulse response filter; Government; OFDM modulation; Quadrature amplitude modulation; Time domain analysis; Channel shortening; digital subscriber lines; multicarrier; time-domain equalization;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2005.855432