DocumentCode :
1172021
Title :
A new class of Fourier series kernels
Author :
Papoulis, A.
Volume :
20
Issue :
2
fYear :
1973
fDate :
3/1/1973 12:00:00 AM
Firstpage :
101
Lastpage :
107
Abstract :
A class of weights is developed for minimizing the error in the approximation of a periodic function by a Fourier series with finitely many terms. The analysis is based on the following problem. Given a function P(t) , find the extrema of the integral \\int_{-T/2}^{T/2} P(t) | y(t) |^{2} dt as y(t) ranges over all normalized trigonometric polynomials of specified order.
Keywords :
Approximation techniques; Fourier series; General circuit theory; Periodic functions; Trigonometric polynomials; Chebyshev approximation; Circuit theory; Convolution; Error correction; Fourier series; Integral equations; Kernel; Minimization; Polynomials; Signal analysis;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1973.1083648
Filename :
1083648
Link To Document :
بازگشت