DocumentCode :
1172193
Title :
The angle property of positive real functions simply derived
Author :
Jorsboe, H.
Volume :
20
Issue :
3
fYear :
1973
fDate :
5/1/1973 12:00:00 AM
Firstpage :
327
Lastpage :
328
Abstract :
The angle property of positive real (rational) functions Z(s) , namely, that |\\arg s | \\geq q |\\arg Z(s)| in the right half of the s -plane, can be demonstrated very simply by an examination of the imaginary parts of the functions \\ln(s/Z(s)) and \\ln (sZ(s)) , i.e., \\arg s \\mp \\arg Z(s) . In particular, on a contour enclosing the entire first quadrant, \\arg s \\mp \\arg Z(s) can rather easily be shown to be nonnegative. The extremum theorem of analytic functions then assures that \\arg s \\mp \\arg Z(s) cannot be negative inside the first quadrant; thus the angle property is demonstrated in the first quadrant. The same result is obtained immediately in the fourth quadrant.
Keywords :
Positive real functions; Capacitors; Network synthesis; Passive circuits; Resistors; Scattering; Substrates; Temperature sensors; Transfer functions; Transistors;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1973.1083663
Filename :
1083663
Link To Document :
بازگشت