DocumentCode :
1172323
Title :
A matrix decomposition-reduction procedure for the pole-zero calculation of transfer functions
Author :
Ohtsuki, Tatsuo ; Cheung, Lap-Kit
Volume :
20
Issue :
3
fYear :
1973
fDate :
5/1/1973 12:00:00 AM
Firstpage :
262
Lastpage :
271
Abstract :
This paper is concerned with eigenvalue approaches for the pole-zero calculations of the transfer function of a linear timeinvariant network. Combinatorial and sparse-matrix algorithms are fully used to increase numerical accuracy and computational speed in the two-sets-of-eigenvalues approach. Some matrix decompositionreduction algorithms are presented to simplify and stabilize the numerical eigenvalue-finding procedures.
Keywords :
Eigenvalue problems; General circuit theory; Linear networks, time-invariant; Matrix methods; Network functions; Poles and zeros; Sparse-matrix methods; Eigenvalues and eigenfunctions; Laboratories; Linear matrix inequalities; Matrix decomposition; Poles and zeros; Polynomials; Transfer functions;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1973.1083677
Filename :
1083677
Link To Document :
بازگشت