DocumentCode :
1173967
Title :
A Neural-Fuzzy Classifier for Recognition of Power Quality Disturbances
Author :
Huang, J. S. ; Negnevitsky, Michael ; Nguyen, Dat T.
Author_Institution :
University of Tasmania
Volume :
21
Issue :
11
fYear :
2001
Firstpage :
56
Lastpage :
57
Abstract :
This article presents a neural-fuzzy technology-based classifier for the recognition of power quality disturbances. The classifier adopts neural networks in the architecture of frequency-sensitive competitive leaning and learning vector quantization. With given size of code words, the neural networks are trained to determine the optimal decision boundaries separating different categories of disturbances. To cope with the uncertainties in the involved patten recognition, the neural network outputs, instead of being taken as the final classification, are used to activate the fuzzy-associative-memory recalling for identifying the most possible type that the input waveform may belong to. Furthermore, the input waveforms are preprocessed by the wavelet transform for feature extraction so as to improve the classifier with respect to recognition accuracy and scheme simplicity. Each sub-band of the transform coefficients is then utilized to recognize the associated disturbances.
Keywords :
Electricity supply industry; Electricity supply industry deregulation; Energy management; Game theory; Genetic algorithms; Neural networks; Power quality; Power system planning; Power system simulation; Wavelet transforms; fuzzy associative memory; neural networks; pattern recognition; power quality disturbances; wavelet transform;
fLanguage :
English
Journal_Title :
Power Engineering Review, IEEE
Publisher :
ieee
ISSN :
0272-1724
Type :
jour
DOI :
10.1109/MPER.2001.4311152
Filename :
4311152
Link To Document :
بازگشت