DocumentCode :
1174270
Title :
MAFIA: a maximal frequent itemset algorithm
Author :
Burdick, Doug ; Calimlim, Manuel ; Flannick, Jason ; Gehrke, Johannes ; Yiu, Tomi
Author_Institution :
Wisconsin Univ., Madison, WI, USA
Volume :
17
Issue :
11
fYear :
2005
Firstpage :
1490
Lastpage :
1504
Abstract :
We present a new algorithm for mining maximal frequent itemsets from a transactional database. The search strategy of the algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms that significantly improve mining performance. Our implementation for support counting combines a vertical bitmap representation of the data with an efficient bitmap compression scheme. In a thorough experimental analysis, we isolate the effects of individual components of MAFIA including search space pruning techniques and adaptive compression. We also compare our performance with previous work by running tests on very different types of data sets. Our experiments show that MAFIA performs best when mining long itemsets and outperforms other algorithms on dense data by a factor of three to 30.
Keywords :
data compression; data mining; transaction processing; tree searching; very large databases; MAFIA; adaptive compression; depth-first traversal; itemset mining; maximal frequent itemset algorithm; search space pruning technique; search strategy; transactional database; vertical bitmap representation; Association rules; Data mining; Intrusion detection; Itemsets; Lattices; Pattern analysis; Testing; Transaction databases; Web pages; Index Terms- Itemset mining; maximal itemsets; transactional databases.;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2005.183
Filename :
1512035
Link To Document :
بازگشت