DocumentCode :
1174452
Title :
Estimating with partial statistics the parameters of ergodic finite Markov sources
Author :
Merhav, Neri ; Ziv, Jacob
Author_Institution :
Technion Israel Inst. of Technol., Haifa, Israel
Volume :
35
Issue :
2
fYear :
1989
fDate :
3/1/1989 12:00:00 AM
Firstpage :
326
Lastpage :
333
Abstract :
Parameter estimation based on data emitted from a finite ergodic Markov source is discussed. This can be considered an extension of the memoryless case. First, an asymptotically optimal estimator is suggested for the case where the parametric model is completely known. For an unknown parametric model (e.g unknown noise distribution with training sequences available) a necessary condition is given for the existence of a universally optimum estimate. A universal estimate is then suggested that is asymptotically nearly optimal. The results hold under fairly mild regularity conditions
Keywords :
Markov processes; information theory; parameter estimation; asymptotically optimal estimator; ergodic finite Markov sources; information theory; parameter estimation; partial statistics; regularity conditions; universally optimum estimate; Cost function; Estimation error; Markov processes; Parameter estimation; Parametric statistics; Presses; Probability; Random variables; Signal detection;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.32126
Filename :
32126
Link To Document :
بازگشت