Title :
Bayesian modeling of dynamic scenes for object detection
Author :
Sheikh, Yaser ; Shah, Mubarak
Author_Institution :
Sch. of Comput. Sci., Univ. of Central Florida, Orlando, FL, USA
Abstract :
Accurate detection of moving objects is an important precursor to stable tracking or recognition. In this paper, we present an object detection scheme that has three innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic backgrounds. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, multimodal spatial uncertainties and complex dependencies between the domain (location) and range (color) are directly modeled. We propose a model of the background as a single probability density. Second, temporal persistence is proposed as a detection criterion. Unlike previous approaches to object detection which detect objects by building adaptive models of the background, the foregrounds modeled to augment the detection of objects (without explicit tracking) since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the proposed method is performed and presented on a diverse set of dynamic scenes.
Keywords :
Bayes methods; image colour analysis; image motion analysis; image resolution; object detection; Bayesian modeling; domain-range representation; image pixels; nonparametric density estimation; object detection; spatially proximal pixels; Bayesian methods; Cameras; Colored noise; Layout; Motion compensation; Object detection; Pixel; Random variables; Technological innovation; Uncertainty; Index Terms- Object detection; MAP-MRF estimation.; joint domain range; kernel density estimation; Algorithms; Artificial Intelligence; Bayes Theorem; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Models, Statistical; Pattern Recognition, Automated; Subtraction Technique; Video Recording;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2005.213