DocumentCode
1175502
Title
Large-signal model of picosecond FETs and measurement of the step response
Author
Ouslimani, A. ; Vernet, Guy ; Crozat, P. ; Adde, Robert
Author_Institution
Inst. of Fundamental Electron., Paris Sud Univ., Orsay, France
Volume
37
Issue
9
fYear
1989
fDate
9/1/1989 12:00:00 AM
Firstpage
1460
Lastpage
1465
Abstract
An FET large-signal model is developed for the time-domain computer-aided design (CAD) of ultrafast circuits. Numerical 2-D look-up tables describe the nonlinear parameters; a DC and microwave FET characterization as a function of bias voltage, followed by parameter extraction, completely determines the tables of parameters. The model can be implemented with simulators handling 2-D tables and applied to commercial transistors without a detailed knowledge of the internal structure of the device. The step response of an NEC710 MESFET is measured and compared with the prediction of the model, demonstrating its accuracy in representing switching waveforms and transient phenomena in the range covering tens of picoseconds. The 20-ps switching time of the NEC710 shows that the modeling methodology, measurement, and simulation are adequate for studying picosecond transient phenomena in single transistors
Keywords
Schottky gate field effect transistors; circuit CAD; equivalent circuits; field effect transistors; semiconductor device models; semiconductor device testing; semiconductor switches; solid-state microwave devices; step response; switching; time-domain synthesis; transient response; 2D look up tables; DC characterisation; MESFET; NEC710; bias voltage; computer-aided design; large-signal model; microwave FET characterization; nonlinear parameters; parameter extraction; picosecond transient phenomena; simulators; step response measurement; switching waveforms; time-domain CAD; ultrafast circuits; Circuit simulation; Computational modeling; Design automation; MESFETs; Microwave FETs; Microwave devices; Microwave transistors; Parameter extraction; Time domain analysis; Voltage;
fLanguage
English
Journal_Title
Microwave Theory and Techniques, IEEE Transactions on
Publisher
ieee
ISSN
0018-9480
Type
jour
DOI
10.1109/22.32231
Filename
32231
Link To Document