DocumentCode :
1176985
Title :
Sparse Hessenberg reduction and the eigenvalue problem for large sparse matrices
Author :
Papathomas, Thomas V. ; Wing, Omar
Volume :
23
Issue :
12
fYear :
1976
fDate :
12/1/1976 12:00:00 AM
Firstpage :
739
Lastpage :
744
Abstract :
A four-stage algorithm for the efficient solution of the standard eigenvalue problem for large sparse matrices is presented. The matrix whose eigenvalues are desired is first reduced to a block upper triangular form, if possible, to expose those eigenvalues that are readily identified. The reduced matrix Is then scaled and transformed to a sparse Hessenberg matrix with numerical stability control. Laguerre´s iteration is then used to find the remaining eigenvalues. Examples are given.
Keywords :
Eigenvalues; Sparse-matrix methods; Algorithm design and analysis; Convergence; Eigenvalues and eigenfunctions; Helium; Iterative methods; Jacobian matrices; Numerical stability; Sparse matrices; Statistics;
fLanguage :
English
Journal_Title :
Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0098-4094
Type :
jour
DOI :
10.1109/TCS.1976.1084153
Filename :
1084153
Link To Document :
بازگشت