DocumentCode :
1177248
Title :
Pattern discovery: a data driven approach to decision support
Author :
Wong, Andrew K.C. ; Wang, Yang
Author_Institution :
Dept. of Syst. Design Eng., Univ. of Waterloo, Ont., Canada
Volume :
33
Issue :
1
fYear :
2003
Firstpage :
114
Lastpage :
124
Abstract :
Decision support nowadays is more and more targeted to large scale complicated systems and domains. The success of a decision support system relies mainly on its capability of processing large amounts of data and efficiently extracting useful knowledge from the data, especially knowledge which is previously unknown to the decision makers. With a large scale system, traditional knowledge acquisition models become inefficient and/or more biased, due to the subjectivity of the experts or the pre-assumptions of certain ideas or algorithmic procedures. Today, with the rapid development of computer technologies, the capability of collecting data has been greatly advanced. Data becomes the most valuable resource for an organization. We present a fundamental framework toward intelligent decision support by analyzing a large amount of mixed-mode data (data with a mixture of continuous and categorical values) in order to bridge the subjectivity and objectivity of a decision support process. By considering significant associations of artifacts (events) inherent in the data as patterns, we define patterns as statistically significant associations among feature values represented by joint events or hypercells in the feature space. We then present an algorithm which automatically discovers statistically significant hypercells (patterns) based on: 1) a residual analysis, which tests the significance of the deviation when the occurrence of a hypercell differs from its expectation, and 2) an optimization formulation to enable recursive discovery. By discovering patterns from data sets based on such an objective measure, the nature of the problem domain will be revealed. The patterns can then be applied to solve specific problems as being interpreted or inferred with.
Keywords :
data analysis; data mining; decision support systems; optimisation; pattern recognition; probability; very large databases; association rules; data analysis; data driven approach; data mining; data sets; decision support system; knowledge acquisition; optimization; organization; pattern based data query; pattern discovery; probabilistic density functions; residual analysis; statistically significant hypercells; Algorithm design and analysis; Artificial intelligence; Automatic testing; Bridges; Data mining; Decision support systems; Knowledge acquisition; Large-scale systems; Pattern analysis; Software systems;
fLanguage :
English
Journal_Title :
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
Publisher :
ieee
ISSN :
1094-6977
Type :
jour
DOI :
10.1109/TSMCC.2003.809869
Filename :
1193066
Link To Document :
بازگشت