DocumentCode :
1181059
Title :
Distance-preserving mappings from binary vectors to permutations
Author :
Chang, Jen-Chun ; Chen, Rong-Jaye ; Klove, T. ; Tsai, Shi-Chun
Author_Institution :
Dept. of Inf. Manage., Ming Hsin Univ. of Sci. & Technol., Hsin Chu, Taiwan
Volume :
49
Issue :
4
fYear :
2003
fDate :
4/1/2003 12:00:00 AM
Firstpage :
1054
Lastpage :
1059
Abstract :
Mappings of the set of binary vectors of a fixed length to the set of permutations of the same length are useful for the construction of permutation codes. In this article, several explicit constructions of such mappings preserving or increasing the Hamming distance are given. Some applications are given to illustrate the usefulness of the construction. In particular, a new lower bound on the maximal size of permutation arrays (PAs) is given.
Keywords :
binary codes; Hamming distance; binary codes; binary vectors; distance-preserving mappings; lower bound; permutation array size; permutation codes; permutation trellis codes; permutations; recursive constructions; Computer science; Convolutional codes; Councils; Hamming distance; Informatics; Information management; Modulation coding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.809507
Filename :
1193814
Link To Document :
بازگشت