DocumentCode :
1184061
Title :
Autocorrelation model-based identification method for ARMA systems in noise
Author :
Hasan, M.K. ; Hossain, N.M. ; Naylor, P.A.
Author_Institution :
Commun. & Signal Process. Group, Imperial Coll. London, UK
Volume :
152
Issue :
5
fYear :
2005
Firstpage :
520
Lastpage :
526
Abstract :
A novel method for parameter estimation of minimum-phase autoregressive moving average (ARMA) systems in noise is presented. The ARMA parameters are estimated using a damped sinusoidal model representation of the autocorrelation function of the noise-free ARMA signal. The AR parameters are obtained directly from the estimates of the damped sinusoidal model parameters with guaranteed stability. The MA parameters are estimated using a correlation matching technique. Simulation results show that the proposed method can estimate the ARMA parameters with better accuracy as compared to other reported methods, in particular for low SNRs.
Keywords :
autoregressive moving average processes; correlation methods; parameter estimation; random noise; signal representation; ARMA systems; autocorrelation model-based identification method; correlation matching technique; damped sinusoidal model representation; low SNR; minimum-phase autoregressive moving average systems; noise; parameter estimation;
fLanguage :
English
Journal_Title :
Vision, Image and Signal Processing, IEE Proceedings -
Publisher :
iet
ISSN :
1350-245X
Type :
jour
DOI :
10.1049/ip-vis:20045042
Filename :
1515988
Link To Document :
بازگشت