Title :
Complexity-Constrained H.264 Video Encoding
Author :
Su, Li ; Lu, Yan ; Wu, Feng ; Li, Shipeng ; Gao, Wen
Author_Institution :
Grad. Sch., Chinese Acad. of Sci., Beijing
fDate :
4/1/2009 12:00:00 AM
Abstract :
In this paper, a joint complexity-distortion optimization approach is proposed for real-time H.264 video encoding under the power-constrained environment. The power consumption is first translated to the encoding computation costs measured by the number of scaled computation units consumed by basic operations. The solved problem is then specified to be the allocation and utilization of the computational resources. A computation allocation model (CAM) with virtual computation buffers is proposed to optimally allocate the computational resources to each video frame. In particular, the proposed CAM and the traditional hypothetical reference decoder model have the same temporal phase in operations. Further, to fully utilize the allocated computational resources, complexity-configurable motion estimation (CAME) and complexity-configurable mode decision (CAMD) algorithms are proposed for H.264 video encoding. In particular, the CAME is performed to select the path of motion search at the frame level, and the CAMD is performed to select the order of mode search at the macroblock level. Based on the hierarchical adjusting approach, the adaptive allocation of computational resources and the fine scalability of complexity control can be achieved.
Keywords :
block codes; code standards; computational complexity; decoding; motion estimation; optimisation; resource allocation; video coding; complexity-configurable mode decision algorithm; complexity-configurable motion estimation algorithm; complexity-distortion optimization approach; computation allocation model; computational resource utilization; macroblock level; power-constrained environment; real-time H.264 video encoding; traditional hypothetical reference decoder model; Complexity control; H264/AVC; power consumption; real-time video coding;
Journal_Title :
Circuits and Systems for Video Technology, IEEE Transactions on
DOI :
10.1109/TCSVT.2009.2014017