DocumentCode :
1190526
Title :
The Widrow-Hoff algorithm for McCulloch-Pitts type neurons
Author :
Hui, Stefen ; Zak, Stanislaw H.
Author_Institution :
Dept. of Math. Sci., San Diego State Univ., CA, USA
Volume :
5
Issue :
6
fYear :
1994
fDate :
11/1/1994 12:00:00 AM
Firstpage :
924
Lastpage :
929
Abstract :
We analyze the convergence properties of the Widrow-Hoff delta rule applied to McCulloch-Pitts type neurons. We give sufficiency conditions under which the learning parameters converge and conditions under which the learning parameters diverge. In particular, we analyze how the learning rate affects the convergence of the learning parameters
Keywords :
adaptive systems; learning (artificial intelligence); neural nets; parallel algorithms; McCulloch-Pitts type neurons; Widrow-Hoff algorithm; Widrow-Hoff delta rule; convergence; learning parameters; learning rate; neural networks; sufficiency conditions; Adaptive algorithm; Algorithm design and analysis; Bridges; Convergence; Error correction; Iterative algorithms; Neurons;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.329689
Filename :
329689
Link To Document :
بازگشت