Title :
Tailored Aggregation for Classification
Author :
Mary-Huard, Tristan ; Robin, Stéphane
Author_Institution :
INRA, UMR AgroParisTech, Paris, France
Abstract :
Compression and variable selection are two classical strategies to deal with large-dimension data sets in classification. We propose an alternative strategy, called aggregation, which consists of a clustering step of redundant variables and a compression step within each group. We develop a statistical framework to define tailored aggregation methods that can be combined with selection methods to build reliable classifiers that benefit from the information contained in redundant variables. Two algorithms are proposed for ordered and nonordered variables, respectively. Applications to the kNN and CART algorithms are presented.
Keywords :
data compression; pattern classification; statistical analysis; CART algorithms; data classification; data compression; selection method; statistical framework; tailored aggregation; tailored aggregation method; Classification; aggregation; large-dimension data; ordered variables.; selection; Algorithms; Artificial Intelligence; Cluster Analysis; Computer Simulation; Decision Support Techniques; Models, Theoretical; Pattern Recognition, Automated;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2009.55