DocumentCode :
1193490
Title :
A generalized Mobius transform and arithmetic Fourier transforms
Author :
Knockaert, Luc
Author_Institution :
Dept. of Inf. Technol.-INTEC, Gent, Belgium
Volume :
42
Issue :
11
fYear :
1994
fDate :
11/1/1994 12:00:00 AM
Firstpage :
2967
Lastpage :
2971
Abstract :
A general approach to arithmetic Fourier transforms (AFT) is developed. The implementation is based on the concept of killer polynomials and the solution of an arithmetic deconvolution problem pertaining to a generalized Mobius transform. This results in an extension of the Bruns (1903) procedure, valid for all prime numbers, and in an AFT that extracts directly the sine coefficients from the Fourier series
Keywords :
Fourier transforms; arithmetic; polynomials; signal processing; Bruns procedure; Fourier series; arithmetic Fourier transforms; arithmetic deconvolution problem; generalized Mobius transform; killer polynomials; periodic function; prime numbers; signal processing; sine coefficients; Arithmetic; Convergence; Deconvolution; Equations; Fourier series; Fourier transforms; Helium; Polynomials;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.330357
Filename :
330357
Link To Document :
بازگشت