DocumentCode :
1194935
Title :
Accurate and Fast Off and Online Fuzzy ARTMAP-Based Image Classification With Application to Genetic Abnormality Diagnosis
Author :
Vigdor, B. ; Lerner, B.
Author_Institution :
Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva
Volume :
17
Issue :
5
fYear :
2006
Firstpage :
1288
Lastpage :
1300
Abstract :
We propose and investigate the fuzzy ARTMAP neural network in off and online classification of fluorescence in situ hybridization image signals enabling clinical diagnosis of numerical genetic abnormalities. We evaluate the classification task (detecting a several abnormalities separately or simultaneously), classifier paradigm (monolithic or hierarchical), ordering strategy for the training patterns (averaging or voting), training mode (for one epoch, with validation or until completion) and model sensitivity to parameters. We find the fuzzy ARTMAP accurate in accomplishing both tasks requiring only very few training epochs. Also, selecting a training ordering by voting is more precise than if averaging over orderings. If trained for only one epoch, the fuzzy ARTMAP provides fast, yet stable and accurate learning as well as insensitivity to model complexity. Early stop of training using a validation set reduces the fuzzy ARTMAP complexity as for other machine learning models but cannot improve accuracy beyond that achieved when training is completed. Compared to other machine learning models, the fuzzy ARTMAP does not loose but gain accuracy when overtrained, although increasing its number of categories. Learned incrementally, the fuzzy ARTMAP reaches its ultimate accuracy very fast obtaining most of its data representation capability and accuracy by using only a few examples. Finally, the fuzzy ARTMAP accuracy for this domain is comparable with those of the multilayer perceptron and support vector machine and superior to those of the naive Bayesian and linear classifiers
Keywords :
ART neural nets; fuzzy neural nets; genetics; image classification; learning (artificial intelligence); medical image processing; fluorescence in situ hybridization image signals; fuzzy ARTMAP neural network; genetic abnormality diagnosis; image classification; machine learning models; Clinical diagnosis; Fluorescence; Fuzzy neural networks; Fuzzy sets; Genetics; Image classification; Machine learning; Multilayer perceptrons; Neural networks; Voting; Fluorescence in situ hybridization (FISH); fuzzy ARTMAP neural network (NN); genetic abnormality diagnosis; image classification; off- and online learning; Artificial Intelligence; Chromosomes, Human, Pair 13; Down Syndrome; Fuzzy Logic; Genetic Testing; Humans; Image Interpretation, Computer-Assisted; In Situ Hybridization, Fluorescence; Microscopy, Fluorescence; Online Systems; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Trisomy;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2006.877532
Filename :
1687937
Link To Document :
بازگشت