DocumentCode :
1195710
Title :
Estimation of model error for nonlinear system identification
Author :
Parameswaran, V. ; Raol, J.R.
Author_Institution :
Div. of Flight Mech. & Control, Nat. Aerosp. Lab., Bangalore, India
Volume :
141
Issue :
6
fYear :
1994
fDate :
11/1/1994 12:00:00 AM
Firstpage :
403
Lastpage :
408
Abstract :
Algorithms are presented for estimation of deterministic model error in the assumed models of nonlinear discrete and continuous time systems. The explicit model error time histories are parameterised using least squares method. The parameterised models relative to the true model explain the deterministic deficiency in the chosen models, in the sense of minimum model error. The algorithms have appealing features of extended Kalman filter. The numerical simulation results are obtained by implementing the algorithms in PC MATLAB
Keywords :
Kalman filters; error analysis; filtering theory; identification; least squares approximations; nonlinear systems; PC MATLAB; deterministic deficiency; deterministic model error; explicit model error time histories; extended Kalman filter; least squares method; minimum model error; model error estimation; nonlinear system identification;
fLanguage :
English
Journal_Title :
Control Theory and Applications, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2379
Type :
jour
DOI :
10.1049/ip-cta:19941500
Filename :
331601
Link To Document :
بازگشت