Title :
Design and Testing of Frequency-Selective Surfaces on Silicon Substrates for Submillimeter-Wave Applications
Author :
Biber, Stephan ; Bozzi, Maurizio ; Günther, Oliver ; Perregrini, Luca ; Schmidt, Lorenz-Peter
Author_Institution :
Univ. of Erlangen-Nuremberg, Nuremberg
Abstract :
A new class of frequency-selective surfaces (FSSs), to be used as quasi-optical filters for harmonic suppression in submillimeter-wave frequency multipliers, is proposed and experimentally verified. The FSSs consist of two-dimensional aperture arrays and are made from microstructured aluminum on electrically thick, high-resistivity silicon substrates. This leads to a very good mechanical stability, reasonably low insertion loss, and permits manufacture of the structure by using standard processes available from the semiconductor industries. This paper presents the design, fabrication, and testing of two sets of prototypes, the former with a passband at 300 GHz and a stopband at 450 GHz and the latter with a passband at 600 GHz and a stopband at 750 GHz. For both frequency ranges, FSSs with rectangular slots and with dogbone-shaped holes have been designed by using the method of moments/boundary integral-resonant mode expansion method. The effect of ohmic and dielectric losses has been determined by using the commercial code HFSS. Several prototypes have been fabricated, and measured by terahertz time-domain spectroscopy and continuous wave measurements, showing high reproducibility of the machining process, insertion loss between 1.0 and 1.6 dB, and stopband attenuation larger than 30 dB. Finally, we demonstrate that the incidence angle can be used as a degree of freedom for fine tuning the stopband, without practically changing the frequency response in the passband
Keywords :
antenna arrays; aperture antennas; band-pass filters; band-stop filters; frequency multipliers; frequency selective surfaces; harmonics suppression; method of moments; submillimetre wave antennas; submillimetre wave spectroscopy; time-domain analysis; 300 GHz; 450 GHz; 600 GHz; 750 GHz; FSS; boundary integral-resonant mode expansion method; continuous wave measurement; dielectric loss; dogbone-shaped hole; frequency-selective surface; harmonic suppression; high-resistivity silicon substrate; machining process; method of moment; ohmic loss; passband filter; quasioptical filter; rectangular slot; stopband filter; submillimeter-wave frequency multiplier; terahertz time-domain spectroscopy; two-dimensional aperture array; Dielectric loss measurement; Dielectric losses; Frequency; Insertion loss; Passband; Prototypes; Silicon; Submillimeter wave filters; Substrates; Testing; Frequency multipliers; frequency-selective surfaces; quasi-optics; silicon; submillimeter-wave technology;
Journal_Title :
Antennas and Propagation, IEEE Transactions on
DOI :
10.1109/TAP.2006.880663