Title :
Thermal modeling for mode-size estimation in microlasers with application to linear arrays in Nd:YAG and Tm,Ho:YLF
Author :
Harrison, J. ; Martinsen, R.J.
Author_Institution :
Schwartz Electro-Opt. Inc., Concord, MA, USA
fDate :
11/1/1994 12:00:00 AM
Abstract :
Microlasers consisting of monolithic, Fabry-Perot resonators are known to rely on pump-induced thermal guiding to generate diffraction-limited beams. Finite-element analysis has been applied to the problem of modeling thermal effects in diode-laser-pumped microlasers for the purpose of predicting near-field patterns, local temperatures, and fracture margins. Estimates of the fundamental-mode radii in Nd:YAG and Tm,Ho:YLF linear microlaser arrays are compared to experimental data
Keywords :
Fabry-Perot resonators; finite element analysis; holmium; laser theory; neodymium; optical pumping; semiconductor device models; solid lasers; thulium; yttrium compounds; LiYF4:Tm,Ho; Nd:YAG; Tm,Ho:YLF; YAG:Nd; YAl5O12:Nd; YLF:Tm,Ho; diffraction-limited beams; diode-laser-pumped microlasers; finite-element analysis; fracture margins; fundamental-mode radii; linear arrays; linear microlaser arrays; local temperatures; microlasers; mode-size estimation; monolithic Fabry-Perot resonators; near-field patterns; pump-induced thermal guiding; thermal effects; thermal modeling; Diffraction; Diodes; Fabry-Perot; Finite element methods; Laser excitation; Laser modes; Lenses; Microchip lasers; Pump lasers; Semiconductor laser arrays;
Journal_Title :
Quantum Electronics, IEEE Journal of