DocumentCode :
119698
Title :
A design tool for modelling and sizing of energy production/storage home system
Author :
Paciello, Luca ; Pedale, Anna ; Scaradozzi, David ; Conte, G.
Author_Institution :
Dipt. di Ing. dell´Inf., Univ. Politec. delle Marche, Ancona, Italy
fYear :
2014
fDate :
17-18 Sept. 2014
Firstpage :
1
Lastpage :
6
Abstract :
In the last years, the rise in cost of fuel and the introduction of incentives from European countries led to a growth of interest for home systems that can locally produce, store and manage electric energy. In this scenario, a correct sizing, with respect to the expected consumption, of the energy production and storage devices is a key element for keeping acceptable the cost of the system. Here, we propose and describe a software simulation tool that can be used in the system design phase in order to determine, in a given range, the values of nominal power of the energy production devices (photovoltaic panels) and the values of capacity of the storage devices (battery) that satisfy basic requirements about autonomy and self-consumption. The designer can then choose among the various possible combinations of nominal power and battery capacity the one that better fits with other requirements, like e.g. that of minimizing the costs of components. The tool works by simulating energy production and flows over a given time period and under chosen external condition. Its structure basically consists of a Petri Net, in which energy production, consumption and flows are represented, in a quantized way, by the exchange of tokens. Such structure has the advantage of providing a simple, effective and intuitive way to describe the features and functionalities of the system that are of interest in the design phase. Behaviours that force autonomy and self-consumption are implemented by means of inhibitory arcs. Two series of simulations, with different discretization steps, are used in order to explore the performances of systems characterized by various combinations of nominal power and battery capacity in a range chosen by the designer. Combinations that do not satisfy specific design requirements about autonomy and self-consumption (expressed roughly as percentage of consumed energy that is locally produced and as percentage of produced energy that is locally consumed) are a- tomatically discarded.
Keywords :
Petri nets; cost reduction; energy storage; home automation; power engineering computing; EPSS; European country; Petri Net; battery capacity; component cost minimization; design tool; discretization step; energy production and storage simulator; energy production device; energy production sizing; energy storage device capacity; energy storage home system; inhibitory arc; nominal power value; self-consumption; software simulation tool; system design phase; token exchange; Batteries; Companies; Electricity; Indexes; Load modeling; Production;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Environmental Energy and Structural Monitoring Systems (EESMS), 2014 IEEE Workshop on
Conference_Location :
Naples
Print_ISBN :
978-1-4799-4989-2
Type :
conf
DOI :
10.1109/EESMS.2014.6923278
Filename :
6923278
Link To Document :
بازگشت