Title :
Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification
Author :
Kyperountas, Marios ; Tefas, Anastasios ; Pitas, Ioannis
Author_Institution :
Dept. of Informatics, Aristotle Univ. of Thessaloniki
fDate :
3/1/2007 12:00:00 AM
Abstract :
A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher\´s criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance
Keywords :
face recognition; piecewise linear techniques; statistical analysis; face verification; frontal face database; linear discriminant analysis; outlier removal process; sample size problem; weighted piecewise LDA; Biometrics; Databases; Face; Humans; Informatics; Information security; Linear discriminant analysis; Pattern analysis; Pattern recognition; System testing; Face verification; linear discriminant analysis (LDA); small sample size (SSS) problem; Algorithms; Artificial Intelligence; Biometry; Computer Simulation; Discriminant Analysis; Face; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Linear Models; Pattern Recognition, Automated; Sample Size;
Journal_Title :
Neural Networks, IEEE Transactions on
DOI :
10.1109/TNN.2006.885038