Author_Institution :
Dept. of Math. Sci., Kent State Univ., Warren, OH
Abstract :
We study all constacyclic codes of length 2s over GR(Rfr,m), the Galois extension ring of dimension m of the ring Rfr=F2+uF2. The units of the ring GR(Rfr,m) are of the forms alpha, and alpha+ubeta, where alpha, beta are nonzero elements of F2m, which correspond to 2 m(2m-1) such constacyclic codes. First, the structure and Hamming distances of (1+ugamma)-constacyclic codes are established. We then classify all cyclic codes of length 2s over GR(Rfr,m), and obtain a formula for the number of those cyclic codes, as well as the number of codewords in each code. Finally, one-to-one correspondences between cyclic and alpha-constacyclic codes, as well as (1+ugamma)-constacyclic and (alpha+ubeta) -constacyclic codes are provided via ring isomorphisms, that allow us to carry over the results about cyclic and (1+ugamma)-constacyclic accordingly to all constacyclic codes of length 2s over GR(Rfr,m).
Keywords :
Galois fields; Hamming codes; cyclic codes; Galois extension ring; Hamming distance; constacyclic code; cyclic code; ring isomorphism; Algebra; Concatenated codes; Galois fields; Hamming distance; Linear code; Codes over rings; Galois extension; Hamming distance; constacyclic codes; cyclic codes; mass formula; repeated-root codes;