DocumentCode :
1197594
Title :
On the structure of linear codes with covering radius two and three
Author :
Struik, Rene
Author_Institution :
Dept. of Math. & Comput. Sci., Eindhoven Univ. of Technol., Netherlands
Volume :
40
Issue :
5
fYear :
1994
fDate :
9/1/1994 12:00:00 AM
Firstpage :
1406
Lastpage :
1416
Abstract :
We obtain new bounds on l(m,r), the minimum length of a linear code with codimension m and covering radius r. All bounds are derived in a uniform way. We employ results from coding theory, some earlier results on covering codes, and combinatorial arguments. We prove the following bounds: l(6, 2)=13, l(7,2)=19, l(8,2)⩾25, l(9,2)⩾34, l(2m-l,2)⩾2m+1 for m⩾3, l(14,2)⩾182, l(16,2)⩾363, l(18,2)⩾725, l(20,2)⩾1449, l(22,2)⩾2897, l(24,2)⩾5794, l(9,3)⩾17, l(10,3)⩾21, l(12,3)⩾31, l(13,3)⩾38
Keywords :
block codes; encoding; binary block codes; bounds; codimension; coding theory; covering codes; covering radius; linear codes; minimum code length; Block codes; Error correction codes; Hamming distance; Information theory; Linear code; Mathematics; Meetings;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.333857
Filename :
333857
Link To Document :
بازگشت