DocumentCode :
1198709
Title :
New algebraic multigrid preconditioning for iterative solvers in electromagnetic finite edge-element analyses
Author :
Mifune, T. ; Iwashita, T. ; Shimasaki, M.
Author_Institution :
Dept. of Electr. Eng., Kyoto Univ., Japan
Volume :
39
Issue :
3
fYear :
2003
fDate :
5/1/2003 12:00:00 AM
Firstpage :
1677
Lastpage :
1680
Abstract :
The algebraic multigrid (AMG) method is an algebraic multilevel solver for linear systems of equations, which stem from the discretization of partial differential equations. This paper develops an efficient AMG solver for singular linear systems of equations arising from electromagnetic finite element (FE) analyses using edge elements. The presented solver can solve singular equations using a technique similar to the shifted incomplete Cholesky conjugate gradient method. Shifted global coefficient matrices are utilized to construct the AMG preconditioner. The numerical results show that the proposed AMG conjugate gradient (AMGCG) solver can converge with a wide range of "shift".
Keywords :
conjugate gradient methods; eddy currents; finite element analysis; iterative methods; magnetostatics; partial differential equations; AMG solver; algebraic multigrid preconditioning; electromagnetic finite edge-element analyses; electromagnetic finite element analyses; iterative solvers; linear systems; partial differential equations; shifted global coefficient matrices; shifted incomplete Cholesky conjugate gradient method; singular equations; Character generation; Differential algebraic equations; Electromagnetic analysis; Finite element methods; Linear systems; Magnetic analysis; Magnetostatics; Multigrid methods; Partial differential equations; Vectors;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2003.810350
Filename :
1198554
Link To Document :
بازگشت