DocumentCode :
1198734
Title :
Fast 3-D edge element analysis by the geometric multigrid method using an accelerated symmetric Gauss-Seidel smoother
Author :
Spasov, Vasil ; Noguchi, So ; Yamashita, Hideo
Author_Institution :
Electr. Machinery Lab., Hiroshima Univ., Higashihiroshima, Japan
Volume :
39
Issue :
3
fYear :
2003
fDate :
5/1/2003 12:00:00 AM
Firstpage :
1685
Lastpage :
1688
Abstract :
A fast magnetostatic field analysis by the three-dimensional (3-D) geometric multigrid method with edge hexahedra is presented. The multigrid method uses a symmetric Gauss-Seidel smoother with conjugate gradient acceleration. The convergence and the speed of the V- and W-cycle multigrid method using this smoother are compared with the multigrid using Gauss-Seidel. Comparison is also made with the finite-element method (FEM) using ICCG. The multigrid with the accelerated symmetric Gauss-Seidel shows a stable convergence rate that does not deteriorate for bad quality meshes. It is much faster than the conventional multigrid with Gauss-Seidel and the FEM using ICCG.
Keywords :
conjugate gradient methods; convergence of numerical methods; magnetic fields; 3D geometric multigrid method; FEM; ICCG; V-cycle multigrid method; W-cycle multigrid method; accelerated symmetric Gauss-Seidel smoother; conjugate gradient acceleration; edge hexahedra; fast 3D edge element analysis; fast magnetostatic field analysis; finite-element method; meshes; stable convergence rate; Acceleration; Convergence; Electromagnetic analysis; Electromagnetic fields; Equations; Finite element methods; Gaussian processes; Magnetic analysis; Magnetostatics; Multigrid methods;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2003.810509
Filename :
1198556
Link To Document :
بازگشت