DocumentCode :
1198922
Title :
Balancing transport and physical Layers in wireless multihop networks: jointly optimal congestion control and power control
Author :
Mung Chiang
Author_Institution :
Electr. Eng. Dept., Princeton Univ., NJ, USA
Volume :
23
Issue :
1
fYear :
2005
Firstpage :
104
Lastpage :
116
Abstract :
In a wireless network with multihop transmissions and interference-limited link rates, can we balance power control in the physical layer and congestion control in the transport layer to enhance the overall network performance while maintaining the architectural modularity between the layers? We answer this question by presenting a distributed power control algorithm that couples with existing transmission control protocols (TCPs) to increase end-to-end throughput and energy efficiency of the network. Under the rigorous framework of nonlinearly constrained utility maximization, we prove the convergence of this coupled algorithm to the global optimum of joint power control and congestion control, for both synchronized and asynchronous implementations. The rate of convergence is geometric and a desirable modularity between the transport and physical layers is maintained. In particular, when congestion control uses TCP Vegas, a simple utilization in the physical layer of the queueing delay information suffices to achieve the joint optimum. Analytic results and simulations illustrate other desirable properties of the proposed algorithm, including robustness to channel outage and to path loss estimation errors, and flexibility in trading off performance optimality for implementation simplicity. This work presents a step toward a systematic understanding of "layering" as "optimization decomposition," where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as the optimization variables coordinating the subproblems. In the case of the transport and physical layers, link congestion prices turn out to be the optimal "layering prices.".
Keywords :
ad hoc networks; convergence; duality (mathematics); energy conservation; optimisation; power control; queueing theory; radio links; radiofrequency interference; telecommunication congestion control; transport protocols; Lagrange duality; TCP Vegas; channel outage; communication network; convergence rate; convex optimization; coupled algorithm; distributed power control algorithm; energy efficiency; energy-aware protocol; interference-limited link rate; jointly optimal congestion control; network performance; network throughput; network utility maximization problem; optimization decomposition; path loss estimation error; physical layer; queueing delay; transmission control protocol; transport layer; wireless multihop ad hoc network; Convergence; Couplings; Interference; Optimal control; Physical layer; Power control; Protocols; Spread spectrum communication; Throughput; Wireless networks; Congestion control; Lagrange duality; convex optimization; cross-layer design; energy-aware protocols; power control; transmission control protocol; utility maximization; wireless ad hoc networks;
fLanguage :
English
Journal_Title :
Selected Areas in Communications, IEEE Journal on
Publisher :
ieee
ISSN :
0733-8716
Type :
jour
DOI :
10.1109/JSAC.2004.837347
Filename :
1374963
Link To Document :
بازگشت