DocumentCode :
1199464
Title :
Prediction of the SINR RMS in the IEEE 802.16 OFDMA System
Author :
Moiseev, Sergey N. ; Kondakov, Mikhail S.
Author_Institution :
Kodofon, Voronezh, Russia
Volume :
57
Issue :
8
fYear :
2009
Firstpage :
2903
Lastpage :
2907
Abstract :
In this paper, we perform the prediction of the signal-to-interference-plus-noise ratio (SINR) root mean square (RMS) in the IEEE 802.16 system. We obtain the time series of the SINR RMS using system-level simulations. The SINR RMS is a heteroscedastic stochastic process. We propose a nonlinear transform of the SINR RMS that generates a linear homoscedastic stochastic process, which may be considered Gaussian in practice. We construct the prediction model of this Gaussian stochastic process using the linear autoregressive process. We propose three predictions of the SINR RMS, that is, the minimum mean square, the median, and the maximum-likelihood predictions, using the prediction of the linear autoregressive process. Our minimum mean-square error (MMSE) prediction of the SINR RMS is more reliable than the prediction based on averaging of the SINR RMS.
Keywords :
Gaussian processes; OFDM modulation; WiMax; frequency division multiple access; least mean squares methods; maximum likelihood estimation; time series; Gaussian stochastic process; IEEE 802.16 OFDMA system; SINR RMS; heteroscedastic stochastic process; linear autoregressive process; linear homoscedastic stochastic process; maximum-likelihood predictions; minimum mean-square error; nonlinear transform; root mean square; signal-to-interference-plus-noise ratio; time series; IEEE 802.16; OFDMA; SINR RMS prediction;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2009.2018600
Filename :
4803796
Link To Document :
بازگشت