DocumentCode :
1199761
Title :
Negative Samples Analysis in Relevance Feedback
Author :
Tao, Dacheng ; Li, Xuelong ; Maybank, Stephen J.
Author_Institution :
Sch. of Comput. Sci. & Inf. Syst., London Univ.
Volume :
19
Issue :
4
fYear :
2007
fDate :
4/1/2007 12:00:00 AM
Firstpage :
568
Lastpage :
580
Abstract :
Recently, relevance feedback (RF) in content-based image retrieval (CBIR) has been implemented as an online binary classifier to separate the positive samples from the negative samples, where both sets of samples are labeled by the user. In many applications, it is reasonable to assume that all the positive samples are alike and thus that the region of the feature space occupied by the positive samples can be described by a single hypersurface. However, for the negative samples, previous RF methods either treat each one of the negative samples as an isolated point or assume the whole negative set can be described by a single convex hypersurface. In this paper, we argue that these treatments of the negative samples are not sound. Our belief is all positive samples are included in a set and the negative samples split into a small number of subsets, each one of which has a simple distribution. Therefore, we first cluster the negative samples into several groups; for each such negative group, we build a marginal convex machine (MCM) subclassifier between it and the single positive group which results in a series of subclassifiers. These subclassifiers are then incorporated into a biased MCM (BMCM) for RF. Experiments were carried out to prove the advantages of BMCM-based RF over previous methods for RF
Keywords :
content-based retrieval; image classification; image retrieval; pattern clustering; relevance feedback; content-based image retrieval; marginal convex machine subclassifier; negative sample analysis; online binary classifier; relevance feedback; single convex hypersurface; Boosting; Content based retrieval; Entropy; Feedback loop; Image retrieval; Kernel; Negative feedback; Radio frequency; Support vector machine classification; Support vector machines; Content-based image retrieval (CBIR); biased marginal convex machine (BMCM); kernel biased marginal convex machine (KBMCM).; kernel marginal convex machine (KMCM); marginal convex machine (MCM); relevance feedback (RF);
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2007.1003
Filename :
4118712
Link To Document :
بازگشت