DocumentCode
1200529
Title
Flow-Graph Solutions of Linear Algebraic Equations
Author
Coates, C.L.
Volume
6
Issue
2
fYear
1959
fDate
6/1/1959 12:00:00 AM
Firstpage
170
Lastpage
187
Abstract
A weighted, oriented topological structure, denoted by
and called a flow graph, is associated with a set of
equations in
variables, denoted by
, such that
is a connection matrix and
a vertex weight matrix of the associated graph. This same set of equations can be written as
where
and
are negative and positive incidence matrices and where
and
are respectively branch and vertex weight matrices of the graph. By familiar algebraic procedures, an expression for the weight
, of a nonreference vertex of
is obtained as a linear combination of the weights of the reference vertices (vertices with zero negative order) and can be written as
. To these algebraic results there correspond topological expressions in terms of subgraphs of
for the coefficients,
. A similar correspondence is obtained between the topological operation of deleting a vertex from the flow graph and the algebraic operation of eliminating a variable from the set of equations. These results are derived from the algebraic equations written in terms of the incidence and weight matrices of the graph. They are similar to those given for the familiar Signal-Flow-Graph, although they are more convient to use, since the topological properties of the flow graph depend only upon the algebraic properties of the set of equations. A flow graph can be drawn directly from an electric network diagram, and the flow-graph properties, used to obtain a solution of the network equations. Examples of this for two types of feedback networks are shown.
and called a flow graph, is associated with a set of
equations in
variables, denoted by
, such that
is a connection matrix and
a vertex weight matrix of the associated graph. This same set of equations can be written as
where
and
are negative and positive incidence matrices and where
and
are respectively branch and vertex weight matrices of the graph. By familiar algebraic procedures, an expression for the weight
, of a nonreference vertex of
is obtained as a linear combination of the weights of the reference vertices (vertices with zero negative order) and can be written as
. To these algebraic results there correspond topological expressions in terms of subgraphs of
for the coefficients,
. A similar correspondence is obtained between the topological operation of deleting a vertex from the flow graph and the algebraic operation of eliminating a variable from the set of equations. These results are derived from the algebraic equations written in terms of the incidence and weight matrices of the graph. They are similar to those given for the familiar Signal-Flow-Graph, although they are more convient to use, since the topological properties of the flow graph depend only upon the algebraic properties of the set of equations. A flow graph can be drawn directly from an electric network diagram, and the flow-graph properties, used to obtain a solution of the network equations. Examples of this for two types of feedback networks are shown.Keywords
Equations; Flow graphs; Helium; Network topology; Poles and zeros; Transfer functions;
fLanguage
English
Journal_Title
Circuit Theory, IRE Transactions on
Publisher
ieee
ISSN
0096-2007
Type
jour
DOI
10.1109/TCT.1959.1086537
Filename
1086537
Link To Document