DocumentCode :
1204696
Title :
Goppa geometric codes achieving the Gilbert-Varshamov bound
Author :
Xing, Chaoping
Author_Institution :
Dept. of Math., Nat. Univ. of Singapore
Volume :
51
Issue :
1
fYear :
2005
Firstpage :
259
Lastpage :
264
Abstract :
Based on s-zeta-functions of curves over finite fields, we show that Goppa geometry codes achieve the q-ary Gilbert-Varshamov bound for all prime powers q (including q=2)
Keywords :
Goppa codes; algebraic geometric codes; rational functions; Goppa geometric codes; arbitrary rational divisor; finite field; higher degrees; prime powers; q-ary Gilbert-Varshamov bound; s-zeta-function; Chaos; Entropy; Galois fields; Geometry; Linear code; Mathematics; Parameter estimation; Bounds; curves; divisors; geometry codes; points;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2004.838351
Filename :
1377505
Link To Document :
بازگشت