Title :
Quantitative Analysis of a Common Audio Similarity Measure
Author :
Jensen, Jesper Hojvang ; Christensen, Mads Grasboll ; Ellis, Daniel P W ; Jensen, Soren Holdt
fDate :
5/1/2009 12:00:00 AM
Abstract :
For music information retrieval tasks, a nearest neighbor classifier using the Kullback-Leibler divergence between Gaussian mixture models of songs´ melfrequency cepstral coefficients is commonly used to match songs by timbre. In this paper, we analyze this distance measure analytically and experimentally by the use of synthesized MIDI files, and we find that it is highly sensitive to different instrument realizations. Despite the lack of theoretical foundation, it handles the multipitch case quite well when all pitches originate from the same instrument, but it has some weaknesses when different instruments play simultaneously. As a proof of concept, we demonstrate that a source separation frontend can improve performance. Furthermore, we have evaluated the robustness to changes in key, sample rate, and bitrate.
Keywords :
Gaussian processes; cepstral analysis; information retrieval; music; pattern classification; Gaussian mixture models; Kullback-Leibler divergence; audio similarity measure; melfrequency cepstral coefficients; music information retrieval tasks; nearest neighbor classifier; quantitative analysis; Bit rate; Cepstral analysis; Councils; Frequency; Instruments; Music information retrieval; Nearest neighbor searches; Source separation; Speech processing; Timbre; Melody; musical instrument classification; timbre recognition;
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
DOI :
10.1109/TASL.2008.2012314