Title :
Universally ideal secret-sharing schemes
Author :
Beimel, Amos ; Chor, Benny
Author_Institution :
Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa, Israel
fDate :
5/1/1994 12:00:00 AM
Abstract :
Given a set of parties {1, ···, n}, an access structure is a monotone collection of subsets of the parties. For a certain domain of secrets, a secret-sharing scheme for an access structure is a method for a dealer to distribute shares to the parties. These shares enable subsets in the access structure to reconstruct the secret, while subsets not in the access structure get no information about the secret. A secret-sharing scheme is ideal if the domains of the shares are the same as the domain of the secrets. An access structure is universally ideal if there exists an ideal secret-sharing scheme for it over every finite domain of secrets. An obvious necessary condition for an access structure to be universally ideal is to be ideal over the binary and ternary domains of secrets. The authors prove that this condition is also sufficient. They also show that being ideal over just one of the two domains does not suffice for universally ideal access structures. Finally, they give an exact characterization for each of these two conditions
Keywords :
cryptography; access structure; binary and ternary domain; finite domain of secrets; shares distribution; ternary domain; universally ideal secret-sharing schemes; Algebra; Computer science; Cryptography; Indium tin oxide; Sufficient conditions;
Journal_Title :
Information Theory, IEEE Transactions on