Title : 
Bounds on achievable convergence rates of parameter estimators via universal coding
         
        
        
            Author_Institution : 
Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel
         
        
        
        
        
            fDate : 
7/1/1994 12:00:00 AM
         
        
        
        
            Abstract : 
Lower bounds on achievable convergence rates of parameter estimators towards the true parameter are derived via universal coding considerations. It is shown that for a parametric class of finite-alphabet information sources, if there exists a universal lossless code whose redundancy decays sufficiently rapidly, then it induces a limitation on the fastest achievable convergence rate of any parameter estimator, at any value of the true parameter, with a possible exception of a vanishingly small subset of parameter values. A specific choice of a universal code yields a slightly different version of this result which extends easily to the continuous case
         
        
            Keywords : 
Bayes methods; convergence; encoding; information theory; parameter estimation; redundancy; Bayesian estimation; achievable convergence rates; finite-alphabet information sources; lower bounds; parameter estimators; parametric class; redundancy decay speed; universal coding; universal lossless code; Chromium; Convergence; Covariance matrix; Data processing; Image reconstruction; Laboratories; Multidimensional systems; Parameter estimation; Pixel; Statistical analysis;
         
        
        
            Journal_Title : 
Information Theory, IEEE Transactions on