Title :
Adaptive Phased-Array Tracking in ECM using Negative Information
Author :
Blanding, Wayne R. ; Koch, Wolfgang ; Nickel, Ulrich
Author_Institution :
York Coll. of Pennsylvania, York, PA
Abstract :
Target tracking with adaptive phased-array radars in the presence of standoff jamming presents both challenges and opportunities to the track filter designer. A measurement likelihood function is derived for this situation which accounts for the effect of both positive and negative contact information. This likelihood function is approximated a? a weighted sum of Gaussian terms consisting of both positive and negative weights, accounting for the positive and negative contact information. Additionally, recent theoretical results have been reported which have derived an accurate measurement error covariance in the vicinity of the jammer when adaptive beamforming is used by the radar to null the effects of the jammer. We compare the impact of using a likelihood function that accounts for negative contact information and the corrected measurement error covariance by comparing five Kalman filter-based trackers in five different scenarios. We show that only those track filters which use both the negative contact information and the corrected measurement error covariance are effective in maintaining track on a maneuvering target as it passes through the jamming region. This approach can also be generalized to any target tracking problem where the sensor response is anisotropic.
Keywords :
Kalman filters; adaptive radar; array signal processing; jamming; phased array radar; radar signal processing; target tracking; ECM; Kalman filter-based trackers; adaptive beamforming; adaptive phased-array radars; adaptive phased-array tracking; likelihood function; measurement error covariance; negative contact information; negative information; positive contact information; standoff jamming; target tracking; track filter; Adaptive filters; Array signal processing; Electrochemical machining; Electronic countermeasures; Information filtering; Information filters; Jamming; Measurement errors; Radar tracking; Target tracking;
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
DOI :
10.1109/TAES.2009.4805270