Title :
Negacyclic codes over Z4 of even length
Author :
Blackford, Thomas
Author_Institution :
Dept. of Math. Sci., Rensselaer Polytech. Inst., Troy, NY, USA
fDate :
6/1/2003 12:00:00 AM
Abstract :
This paper generalizes the results from Wolfmann (see ibid., vol.45, p.2527-2532, Nov. 1999 and vol.47, p.1773-1779, July 2001), classifying all negacyclic codes over Z4 of even length using a transform approach. It is then shown which linear binary cyclic codes are images of negacyclic codes under the Gray map. In the process, the concatenated structure of both negacyclic codes and binary repeated-root cyclic codes is given.
Keywords :
binary codes; concatenated codes; cyclic codes; discrete Fourier transforms; linear codes; DFT; Gray map; binary repeated-root cyclic codes; concatenated structure; discrete Fourier transform; even length codes; linear binary cyclic codes; negacyclic codes; Binary codes; Concatenated codes; Context; Galois fields; Modules (abstract algebra); Polynomials; Vectors;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2003.811915