DocumentCode :
1208874
Title :
On achieving fairness in the joint allocation of processing and bandwidth resources: principles and algorithms
Author :
Zhou, Yunkai ; Sethu, Harish
Author_Institution :
MSN Div., Microsoft Corp., Redmond, WA, USA
Volume :
13
Issue :
5
fYear :
2005
Firstpage :
1054
Lastpage :
1067
Abstract :
The problem of achieving fairness in the allocation of the bandwidth resource on a link shared by multiple flows of traffic has been extensively researched over the last decade. However, with the increasing pervasiveness of optical networking and the occasional trend toward using over-provisioning as the solution to bandwidth congestion, a router´s processor also becomes a critical resource to which, ideally speaking, all competing flows should have fair access. For example, achieving fairness in the allocation of processing resources can be part of an overall strategy of countering certain kinds of denial of service attacks (such as those based on an excessive use of the router processor by using unnecessary optional headers). In this paper, we investigate the issue of achieving fairness in the joint allocation of the processing and bandwidth resources. We first present a simple but powerful general principle for defining fairness in such systems based on any of the classic notions of fairness such as max-min fairness, proportional fairness, and utility max-min fairness defined for a single resource. We apply our principle to a system with a shared processor and a shared link with max-min fairness as the desired goal. We then propose a practical and provably fair packet-by-packet algorithm for the joint allocation of processing and bandwidth resources. We demonstrate the fairness achieved by our algorithm through simulation results using both synthetic and real gateway traffic traces. The principles and the algorithm detailed in this paper may also be applied in the allocation of other kinds of resources such as power, which is a critical resource in mobile systems.
Keywords :
authorisation; bandwidth allocation; internetworking; minimax techniques; network servers; processor scheduling; resource allocation; telecommunication congestion control; telecommunication network routing; telecommunication traffic; bandwidth congestion; bandwidth resource allocation; denial of service attack; joint allocation processing; multiple traffic flow; packet-by-packet algorithm; proportional fairness; real gateway traffic trace; router processor; synthetic gateway traffic; utility maxmin fairness; Bandwidth; Computer crime; Conferences; Engineering profession; Image motion analysis; Optical fiber networks; Quality of service; Resource management; Telecommunication traffic; Traffic control; Fairness; max–min; processor sharing; resource allocation;
fLanguage :
English
Journal_Title :
Networking, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1063-6692
Type :
jour
DOI :
10.1109/TNET.2005.858449
Filename :
1528494
Link To Document :
بازگشت