Title :
A speech/music discriminator based on RMS and zero-crossings
Author :
Panagiotakis, Costas ; Tziritas, George
Author_Institution :
Dept. of Comput. Sci., Univ. of Crete, Heraklion, Greece
Abstract :
Over the last several years, major efforts have been made to develop methods for extracting information from audiovisual media, in order that they may be stored and retrieved in databases automatically, based on their content. In this work we deal with the characterization of an audio signal, which may be part of a larger audiovisual system or may be autonomous, as for example in the case of an audio recording stored digitally on disk. Our goal was to first develop a system for segmentation of the audio signal, and then classification into one of two main categories: speech or music. Among the system´s requirements are its processing speed and its ability to function in a real-time environment with a small responding delay. Because of the restriction to two classes, the characteristics that are extracted are considerably reduced and moreover the required computations are straightforward. Experimental results show that efficiency is exceptionally good, without sacrificing performance. Segmentation is based on mean signal amplitude distribution, whereas classification utilizes an additional characteristic related to the frequency. The classification algorithm may be used either in conjunction with the segmentation algorithm, in which case it verifies or refutes a music-speech or speech-music change, or autonomously, with given audio segments. The basic characteristics are computed in 20 ms intervals, resulting in the segments´ limits being specified within an accuracy of 20 ms. The smallest segment length is one second. The segmentation and classification algorithms were benchmarked on a large data set, with correct segmentation about 97% of the time and correct classification about 95%.
Keywords :
audio databases; audio recording; audio signal processing; audio-visual systems; feature extraction; information retrieval; music; signal classification; speech processing; statistical analysis; audio recording; audio signal segmentation; audiovisual media; classification algorithm; information extraction; mean signal amplitude distribution; music classification; speech classification; speech/music discriminator; zero-crossing rate; Audio databases; Audio recording; Audio-visual systems; Classification algorithms; Content based retrieval; Data mining; Multiple signal classification; Music information retrieval; Real time systems; Speech;
Journal_Title :
Multimedia, IEEE Transactions on
DOI :
10.1109/TMM.2004.840604