DocumentCode :
1214604
Title :
Parametric Model Discrimination for Heavily Censored Survival Data
Author :
Block, A. Daniel ; Leemis, Lawrence M.
Author_Institution :
Dept. of Math., Coll. of William & Mary, Williamsburg, VA
Volume :
57
Issue :
2
fYear :
2008
fDate :
6/1/2008 12:00:00 AM
Firstpage :
248
Lastpage :
259
Abstract :
Simultaneous discrimination among various parametric lifetime models is an important step in the parametric analysis of survival data. We consider a plot of the skewness versus the coefficient of variation for the purpose of discriminating among parametric survival models. We extend the method of Cox & Oakes from complete to censored data by developing an algorithm based on a competing risks model and kernel function estimation. A by-product of this algorithm is a nonparametric survival function estimate.
Keywords :
reliability theory; remaining life assessment; competing risks model; heavily censored survival data; kernel function estimation; parametric lifetime models; parametric model discrimination; Competing risks; distribution selection; kernel functions;
fLanguage :
English
Journal_Title :
Reliability, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9529
Type :
jour
DOI :
10.1109/TR.2008.923488
Filename :
4515950
Link To Document :
بازگشت