DocumentCode :
1217884
Title :
Nonlinear Spatial Filtering of Multichannel Surface Electromyogram Signals During Low Force Contractions
Author :
Zhou, Ping ; Suresh, Nina L. ; Lowery, Madeleine M. ; Rymer, William Z.
Author_Institution :
Sensory Motor Performance Program (SMPP), Northwestern Univ., Chicago, IL
Volume :
56
Issue :
7
fYear :
2009
fDate :
7/1/2009 12:00:00 AM
Firstpage :
1871
Lastpage :
1879
Abstract :
This study introduces the application of nonlinear spatial filters to help identify single motor unit discharge from multiple channel surface electromyogram (EMG) signals during low force contractions. The nonlinear spatial filters simultaneously take into account the instantaneous amplitude and frequency information of a signal. This property was used to enhance motor unit action potentials (MUAPs) in the surface EMG record. The advantages of nonlinear spatial filtering for surface MUAP enhancement were investigated using both simulation and experimental approaches. The simulation results indicate that when compared with various linear spatial filters, nonlinear spatial filtering achieved higher SNR and higher kurtosis of the surface EMG distribution. Over a broad range of SNR and kurtosis levels for the input signal, nonlinear spatial filters achieved at least 32 times greater SNR and 11% higher kurtosis for correlated noise, and at least 15 times greater SNR and 1.7 times higher kurtosis for independent noise, across electrode array channels. The improvements offered by nonlinear spatial filters were further documented by applying them to experimental surface EMG array recordings. Compared with linear spatial filters, nonlinear spatial filters achieved at least nine times greater SNR and 25% higher kurtosis. It follows that nonlinear spatial filters represent a potentially useful supplement to linear spatial filters for detection of motor unit activity in surface EMG at low force contractions.
Keywords :
biomechanics; electromyography; filtering theory; medical signal detection; medical signal processing; neurophysiology; nonlinear filters; spatial filters; statistical distributions; MUAP enhancement; electromyogram signal; kurtosis analysis; low-force contraction; motor unit action potential; motor unit activity detection; multichannel surface EMG signal; nonlinear spatial filtering; surface EMG distribution; Electrodes; Electromyography; Filtering; Frequency; Noise level; Nonlinear filters; Signal processing; Signal to noise ratio; Spatial filters; Surface discharges; Low force contraction; motor unit; nonlinear spatial filter; surface electromyogram (EMG); Action Potentials; Algorithms; Computer Simulation; Electromyography; Humans; Muscle Contraction; Nonlinear Dynamics; Signal Processing, Computer-Assisted;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2009.2017736
Filename :
4808156
Link To Document :
بازگشت