DocumentCode :
1218391
Title :
Fitting a statistical model to SIR-C SAR images of the sea surface
Author :
Fusco, Adele ; Galdi, Carmela ; Ricci, Giuseppe ; Tesauro, Manlio
Author_Institution :
Dipt. di Ingegneria, Universita degli Studi del Sannio, Benevento, Italy
Volume :
40
Issue :
4
fYear :
2004
Firstpage :
1179
Lastpage :
1190
Abstract :
A suite of statistical procedures aimed at assessing to what extent polarimetric and/or multifrequency synthetic aperture radar (SAR) images of the sea surface can be modeled in terms of spherically invariant random vectors and matrices (SIRVs and SIRMs) is presented. The proposed tests assume that images can be described by resorting to the compound-Gaussian model, but do not require any a priori knowledge about the actual first-order probability density function (pdf) of the texture. The tests have also been used to analyze three data sets from STR-C/X-SAR missions.
Keywords :
geophysical signal processing; oceanographic techniques; radar imaging; remote sensing by radar; statistical analysis; synthetic aperture radar; SIR-C SAR images; compound-Gaussian model; multifrequency synthetic aperture radar; polarimetric synthetic aperture radar; probability density function; sea surface; spherically invariant random matrices; spherically invariant random vectors; statistical model; Algorithm design and analysis; Data analysis; Detection algorithms; Frequency; Petroleum; Probability density function; Sea surface; Surface fitting; Synthetic aperture radar; Testing;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2004.1386873
Filename :
1386873
Link To Document :
بازگشت