• DocumentCode
    1219114
  • Title

    A subspace fitting method for identification of linear state-space models

  • Author

    Swindlehust, A. ; Roy, R. ; Ottersten, B. ; Kailath, T.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA
  • Volume
    40
  • Issue
    2
  • fYear
    1995
  • fDate
    2/1/1995 12:00:00 AM
  • Firstpage
    311
  • Lastpage
    316
  • Abstract
    A new method is presented for the identification of systems parameterized by linear state-space models. The method relies on the concept of subspace fitting, wherein an input/output data model parameterized by the state matrices is found that best fits, in the least-squares sense, the dominant subspace of the measured data. Some empirical results are included to illustrate the performance advantage of the algorithm compared to standard techniques
  • Keywords
    Hankel matrices; MIMO systems; identification; least squares approximations; linear systems; state-space methods; MIMO systems; identification; input/output data model; least-squares; linear state-space models; state matrices; subspace fitting method; time invariant linear systems; Bibliographies; Data models; Electrons; Linear systems; MIMO; Optimal control; Sensor arrays; Signal processing algorithms; Stochastic processes; Target tracking;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.341800
  • Filename
    341800