DocumentCode :
1220096
Title :
Mixed-Drove Spatiotemporal Co-Occurrence Pattern Mining
Author :
Celik, Mete ; Shekhar, Shashi ; Rogers, James P. ; Shine, James A.
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN
Volume :
20
Issue :
10
fYear :
2008
Firstpage :
1322
Lastpage :
1335
Abstract :
Mixed-drove spatio-temporal co-occurrence patterns (MDCOPs) represent subsets of two or more different object-types whose instances are often located in spatial and temporal proximity. Discovering MDCOPs is an important problem with many applications such as identifying tactics in battlefields, games, and predator-prey interactions. However, mining MDCOPs is computationally very expensive because the interest measures are computationally complex, datasets are larger due to the archival history, and the set of candidate patterns is exponential in the number of object-types. We propose a monotonic composite interest measure for discovering MDCOPs and novel MDCOP mining algorithms. Analytical results show that the proposed algorithms are correct and complete. Experimental results also show that the proposed methods are computationally more efficient than naive alternatives.
Keywords :
data mining; MDCOP; archival history; mixed-drove spatio-temporal coccurrence patterns; pattern mining; predator-prey interactions; spatial proximity; spatiotemporal data mining; temporal proximity; Data mining; Mining methods and algorithms; Spatial databases and GIS;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2008.97
Filename :
4522550
Link To Document :
بازگشت