DocumentCode :
1221059
Title :
A quasi-dense approach to surface reconstruction from uncalibrated images
Author :
Lhuillier, Maxime ; Quan, Long
Author_Institution :
LASMEA-UMR, Aubiere, France
Volume :
27
Issue :
3
fYear :
2005
fDate :
3/1/2005 12:00:00 AM
Firstpage :
418
Lastpage :
433
Abstract :
This paper proposes a quasi-dense approach to 3D surface model acquisition from uncalibrated images. First, correspondence information and geometry are computed based on new quasi-dense point features that are resampled subpixel points from a disparity map. The quasi-dense approach gives more robust and accurate geometry estimations than the standard sparse approach. The robustness is measured as the success rate of full automatic geometry estimation with all involved parameters fixed. The accuracy is measured by a fast gauge-free uncertainty estimation algorithm. The quasi-dense approach also works for more largely separated images than the sparse approach, therefore, it requires fewer images for modeling. More importantly, the quasi-dense approach delivers a high density of reconstructed 3D points on which a surface representation can be reconstructed. This fills the gap of insufficiency of the sparse approach for surface reconstruction, essential for modeling and visualization applications. Second, surface reconstruction methods from the given quasi-dense geometry are also developed. The algorithm optimizes new unified functionals integrating both 3D quasi-dense points and 2D image information, including silhouettes. Combining both 3D data and 2D images is more robust than the existing methods using only 2D information or only 3D data. An efficient bounded regularization method is proposed to implement the surface evolution by level-set methods. Its properties are discussed and proven for some cases. As a whole, a complete automatic and practical system of 3D modeling from raw images captured by hand-held cameras to surface representation is proposed. Extensive experiments demonstrate the superior performance of the quasi-dense approach with respect to the standard sparse approach in robustness, accuracy, and applicability.
Keywords :
computational geometry; computer vision; estimation theory; feature extraction; image reconstruction; image representation; surface reconstruction; 2D image information; 3D modeling; 3D quasidense points; 3D surface model acquisition; automatic geometry estimation; bounded regularization method; cameras; fast gauge free uncertainty estimation algorithm; level set methods; quasidense geometry; quasidense point features; silhouettes; standard sparse method; surface reconstruction; surface representation; uncalibrated images; visualization application; Cameras; Computational geometry; Data visualization; Image reconstruction; Information geometry; Layout; Robustness; Stereo image processing; Stereo vision; Surface reconstruction; 3D modeling; Index Terms- Three-dimensional reconstruction; level-set method.; matching; structure from motion; surface reconstruction; uncertainty; variational calculus; Algorithms; Artificial Intelligence; Calibration; Cluster Analysis; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Information Storage and Retrieval; Models, Biological; Models, Statistical; Pattern Recognition, Automated; Photogrammetry; Signal Processing, Computer-Assisted; Subtraction Technique;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2005.44
Filename :
1388267
Link To Document :
بازگشت