DocumentCode :
1221655
Title :
Physical and mathematical structure determine convergence rate of iterative techniques
Author :
Canning, Francis X.
Author_Institution :
Rockwell Int. Sci. Center, Thousand Oaks, CA, USA
Volume :
25
Issue :
4
fYear :
1989
fDate :
7/1/1989 12:00:00 AM
Firstpage :
2825
Lastpage :
2827
Abstract :
The use of various iterative techniques used to solve the moment-method equation is discussed. The conjugate gradient method has previously been used to solve moment-method problems. Since the moment-method matrix (theoretically) has a positive definite Hermitian part, the generalized conjugate residual (GCR) method can also be used. Sample calculations show that the GCR has superior convergence, especially when the moment-method discretization preserves the abovementioned matrix property
Keywords :
convergence of numerical methods; iterative methods; conjugate gradient method; convergence rate; generalized conjugate residual; iterative techniques; mathematical structure; moment-method equation; moment-method matrix; Canning; Convergence; Eigenvalues and eigenfunctions; Equations; Gradient methods; Iterative algorithms; Iterative methods; Matrix decomposition; Moment methods; Scattering;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/20.34296
Filename :
34296
Link To Document :
بازگشت